
5 May 2000 Page 1 of 3 J3/00-169

Subject: Minor things? left over from 00-1441-1, and a few more
From: Van Snyder
References: 00-103 00-1361-1 00-1441-1

1 Introduction

The issues mentioned in 00-103 that didn’t get addressed were collected into 00-1441-1. Part of
00-1441-1 was studied at meeting 152, and part was not. Of the part that was studied, several
edits were passed. I collected these, together with the part that was not studied, into 00-1441-1.
Of the part that was not studied, I thought that several were probably typos, and part probably
had technical content. I divided these into separate sections (2 and 3) in 00-144rl.
The editor (taking a suggestion I wrote into 00-1441-1) has studied the ones I thought were
typos, accepted some, and rejected others (some on stylistic grounds, some because they had
technical content). Four of those are included here, with more explanation, for consideration
at meeting 153.
There were eight edits that were identified in 00-1441-1 by “may have technical content.” Of
those, six are repeated here for consideration at meeting 153.
I’ve also added a few.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

2.1 From part 2 of 00-144rl

[Editor: The part from “A derived-type object” to the end of the note applies to normative text 1839-12
at [183:36]. Split the note into two parts, and move the identified part to [183:36+], leaving it
as a nonnormative note.]

[Editor: We are careful in other places, e.g. (7.5.2) and (5.1.2.11), not to suggest that all 253:46
intrinsic functions can be used as actual arguments. E.g., even though AMAXl is a specific
name of an intrinsic function, it cannot be used as an actual argument. So as not to contradict
other sections, make the wording here the same as is used in (7.5.2) and (5.1.2.11), i.e. replace
“function” by “procedure listed in 13.15 and not marked with a bullet (0)” after “function”
(but don’t do this if 00-187 passes).]

[The invoking program unit may not be a subprogram. Editor: Replace “subprogram” by 261:4
“scoping unit.” The term “invoking scoping unit” is used frequently in (5.1.2.3), and possibly
elsewhere.]

Page 2 of 3 J3/00-169 5 May 2000

2.2 From part 3 of 00-144rl

[Editor: Add “and type parameters” after “array bounds.”]

[Editor: Replace “is determined by the constructor name” by “and type parameters are as
described in 4.5.6”.]

[Editor: After “are” add “those of the specific function referenced,”; after “arguments7’ add “,
as specified in 14.1.2.3”.]

[Editor: Before “from” insert ‘ 0 accessed by use as~ociation’~. After “IEEEARITHMETIC”
add “(15)” .]

[Editor: Remove “or” at [259:48]. Insert “, or a reference to the NULL() intrinsic” after
“pointer” at [260:1].]

[Editor: Replace “the vendor ... support” by “the supported subset of features is processor
dependent.” These kinds of things are usually (always?) described by reference to the processor,
not the vendor.]

2.3 New ones

[The example is incorrect. The second argument does not have the same characteristics as the
corresponding argument in the procedure POINT3DLENGTH overrides. Editor: Replace by the
following:]

CLASS (POINT3D) INTENT(I N) : : A
CLASS (POINT_2D), INTENT(1N) : : B

[Editor: Add PARAMETER to the list. Also see edit for [81:29] below.]

[I couldn’t find a constraint against ALLOCATABLE and EXTERNAL being specified for the
same entity. Replace the one about ALLOCATABLE and POINTER by:]
Constraint: If an entity has the ALLOCATABLE attribute it shall not have the POINTER or

EXTERNAL attribute.
[Editor: Delete “PARAMETER,” and “DIMENSION,”. The PARAMETER attribute already
can’t be applied to dummy arguments, which is the only place VALUE can be used. The
DIMENSION attribute is prohibited by the constraint at [65:21-221. But don’t bother with this
if 00-170 passes.]

[Editor: Capitalize “external” twice to be consistent with usage in the other three paragraphs
in this sectiop.]

[Editor: Delete ~ Duplicates the constraint at [71:11-121. See [79:21-231.1

[Editor: Delete - Duplicates the constraint at [64:31-321. See [79:21-231.1

[Editor: Delete - Duplicates the constraint at [64:18-201. See [79:21-231.1

[Editor: Delete - Duplicates the constraint at [64:18-201. See [79:21-231.1

[Editor: Delete - Duplicates the constraint at [64:23], as modified above. See [79:21-231.1

[Editor: Delete ~ Duplicates the constraint at [64:25-261. See [79:21-231.1

[Editor: Delete - Duplicates the constraint at [65:32]. See [79:21-231.1

105:44

115111-12

115~16-17

119:14-15

259~48-1

361135-36

54:38

64:23

64137-38

65:15,16

76:31, 33

79:27

80126-28

81117-18

81:27-28

81:29

81:38

83~1-2

5 May 2000 Page 3 of 3 J3/00-169

[Editor: Delete - Duplicates the constraint at [64:19-201. See [79:21-231.1 91:15-16

[This repeats material at [134:40], but the intent here appears to be list all the circumstances 107:27+
in which things get deallocated.]
When an intrinsic assignment statement (7.5.1.5) is executed, allocatable components of the
variable are deallocated before the assignment takes place.

[Editor: Insert “is” after the first “and” delete the second “and” .] 118:13

[Editor: “When” =+ “If”.] 189:31

[Editor: Start a new paragraph] 192:27+
The err , eof , and eor arguments correspond, respectively, to the ERR= (9.9.3), END=
(9.9.4) and EOR= (9.9.5) specifiers in a data transfer input/output statement.

[Editor: “hargument” + “argument’’ .] 237:22

[Editor: Replace “OPTIONAL ... PUBLIC” by “or OPTIONAL” - Duplicates the constraint 242:2
at [70:40]. See [79:21-231.1

[Editor: Insert “(functions only)” at the end - for consistency with the other ones in the list.] 245:27

[Editor: Insert “7.1.3” before “7.1.8.7”. 7.1.3 seems to be the reference for defined operations 249:23
that would be most interesting here.]

[Editor: Insert “and type-bound procedure bindings” at the end.] 251:37

[The proc-decl-list isn’t optional. Editor: Replace “at most” by “exactly” .] 252:42

[Editor: Simplify by inserting “those” after “are” and deleting “and are ... interface” .] 253:9

[Editor: After “argument” insert “other than the passed-object dummy argument” .] 255:lO

[Editor: After “argument” insert “that does not have INTENT(IN)”.] 257:ll

[Editor: After “pointers” insert “that do not become undefined and are”. Otherwise, the 257:41
statement implies that local pointers without the SAVE attribute retain their values if they
happen to be associated with a dummy argument that has the characteristics discussed at this
point .]

[Editor: After “dummy argument” insert “type”. A type can’t be an extension of a dummy 258:30
argument .]

[There is a constraint at [255:28] that is nearly identical to the sentence “The label ... reference.” 260:19-21
Here, it says “executable construct” while in the constraint at [255:28] it says “branch target.”
I don’t know if there’s a real inconsistency, but the difference in wording is confusing. The
simplest solution is to remove the sentence here. Editor: Insert “(12.4)” after “specifier” and
delete the sentence “The ... reference.”]

[Editor: Delete “that” (finish - hopefully - work begun in 00-136rl).] 352:18

5 May 2000 Page 1 of 3 J3/00-170

Subject: Syntax and Semantics of VALUE attribute, issue 214, part of issue 90
From: Van Snyder
References: 00-171

1 Introduction

I propose that the syntax for what is now called the VALUE attribute ought to be IN-
TENT(VALUE), and that the semantics should be that the subprogram can change the dummy
argument, but the associated actual argument is not thereby changed. This is the way it works
in C if the asterisk is omitted from a formal argument.
The reasons for this proposal are

0 The semantics of the VALUE attribute are more different than necessary from the seman-
tics of omitting the asterisk from a dummy argument in C,

0 The semantics of the VALUE attribute are less useful than they would be if they were
more similar to the semantics of omitting the asterisk from a dummy argument in C, and

0 The standard would be simpler if the syntax were INTENT(VALUE): Almost everywhere
the VALUE attribute is mentioned, the INTENT attribute is mentioned in the same
sentence. If INTENT(VALUE) were used, the prohibition against duplicate specification
would remove the need for any discussion of the relation between VALUE and INTENT.

Malcolm says the semantic change proposed here doesn’t work because it runs afoul of the
association rules in 12.4, 14.6.1.1, and item 12 in 14.7.5. Malcolm’s “easy fix” is to use IN-
TENT(VALUE) instead of VALUE. Then, all of the constraints that say “ ... VALUE, IN-
TENT ...” can just say “ ... INTENT...”, and everywhere that says “INTENT(1N) and/or
VALUE” would say “INTENT(1N) and/or INTENT(VALUE)”.
I’ve put my original proposal for the semantics of INTENT(VALUE) as a separate section, so
it’s written down in case somebody really likes it and figures out how to make it work, and put
in Malcolm’s idea instead. Everything else is the same either way. The only justification that
remains is the third point above.

2 Edits

Edits refer to 00-0071-1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

[Editor: Delete “5.2.12 VALUE statement” .] ...
111

[Editor: Delete the syntax rule for the VALUE attribute.] 64: 7

[Editor: Delete “, VALUE,” because INTENT covers it.] 64:29

5 May 2000 Page 2 of 3 J3/00-170

[Editor: Delete. Re-stated by the edit at [71:19+] below.] 65~15-20

The constraint at [65:15-171 includes a prohibition against PARAMETER, which isn’t needed N o t e to 53
because the PARAMETER attribute is prohibited for dummy arguments at [63:27], and a
prohibition against DIMENSION, which is prohibited at [65:21]. So even if the change pro-
posed here is not accepted, the prohibitions against PARAMETER and DIMENSION should
be removed from the constraint at [65:15-171.

[Editor: Delete. There’s no reason for it.] 65121-22

[Editor: Replace ‘VALUE” by “INTENT(VALUE)”’ twice.] 65:28, 31

or VALUE 71:10+
Constraint: If the INTENT(VALUE) attribute is specified for a dummy argument of a subpro- 71:19+

gram or interface body that has a language-binding-spec

(1) The dummy argument shall be a scalar, and
(2) If the dummy argument is of character type, the length parameter shall be

omitted or shall be specified by an initialization expression with the value one.

Constraint: If the INTENT(VALUE) attribute is specified the ALLOCATABLE, POINTER,
or VOLATILE attribute shall not be specified.

There is no need to prohibit EXTERNAL because that’s covered by the constraint at [71:11-

constraint against POINTER serves.
121. If the change in 00-171 is accepted, a conspiracy of the revised constraint and the

N o t e to J3

The INTENT(VALUE) attribute implies the INTENT(1N) attribute. A processor may choose, 71:38+
however, to use different argument passing mechanisms for INTENT(1N) and INTENT(VALUE)
dummy arguments.
Note 5.11;
The name of the INTENT(VALUE) attribute is intended to be suggestive. Although the
processor is not required to use pass-by-value for an argument with the INTENT(VALUE)
attribute, that might be a possible implementation. If the INTENT(VALUE) attribute is spec-
ified for a dummy argument of a procedure or interface body that has a language-binding-spec,
the processor shall use the same argument passing convention as the companion processor,
which is often pass-by-value.

[Editor: Delete section 5.1.2.14, including unresolved issue 214.1 78:15-35

[Editor: Delete.] 82131-33

[Editor: Replace “VALUE (5.1.2.14)” by INTENT(VALUE) (5.1.2.3)”.] 244: 16

[Editor: Insert “, whether it has the INTENT(VALUE) attribute” after “pointer”.] 244:23

[Editor: Replace “VALUE” by “INTENT(VALUE)” .] 245:21

[Editor: Replace “the VALUE attribute” with “INTENT(VALUE)”.] 257:36

[Editor: Replace “the VALUE attribute” with “INTENT(VALUE)”.] 258:7

[Editor: Replace “VALUE” by “INTENT(VALUE)” .] 390:24

[Editor: Replace “the VALUE attribute” by “INTENT(VALUE)” twice.] 392:33,35

[Editor: Replace “The VALUE attribute” by “INTENT(VALUE)”.] 393:8

5 May 2000 Page 3 of 3 J3/00-170

[Editor: Replace “VALUE” by “INTENT(VALUE))” twice.] 393:37,40

[Editor: Replace “the VALUE attribute” by “INTENT(VALUE)” .] 393:46

[Editor: Delete “VALUE” from the index twice. 467

3 What I originally had in mind

These have the form of edits, but are no longer part of the proposal.

Constraint: If the INTENT(VALUE) attribute is specified the ALLOCATABLE or POINTER 71:19+
attribute shall not be specified.

The INTENT(VALUE) attribute for a nonpointer dummy argument specifies that if the value 71:38+
of the dummy argument is changed or becomes undefined during execution of the procedure,
the associated actual argument is not affected. The INTENT(VALUE) attribute for a pointer
dummy argument specifies that if the association status of the pointer changes or becomes
undefined during execution of the procedure, the pointer association status of the associated
actual argument is not affected.

The constraint at [65:15-171 originally included a prohibition against VOLATILE. If the se- Note to J3
mantics are changed as suggested in the edit for [71:38+], there isn’t a problem with the
VOLATILE attribute: It would apply to the dummy argument, not the associated actual
argument. The same reasoning applies to the comments about ASYNCHRONOUS in issue
90 at [65:28-311.

5 May 2000 Page 1 of I J3/00-171

Subject: More little problems with procedure pointers
From: Van Snyder

1 Introduction

(1) It ought to be allowed to specify intent for dummy procedure pointers.

(2) Whether a dummy procedure is a pointer ought to be a characteristic.

(3) It ought to be possible to assign a procedure to a procedure pointer with explicit interface
from within itself. It’s not always possible because the only procedures that have explicit
interfaces from within themselves are recursive subroutines and recursive functions that
have a result variable different from their names.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and 3 in the text.- Items 1 and 2

Constraint: The INTENT attribute shall not be specified for a dummy procedure that is not a 71:ll-12
dummy procedure pointer.

[Editor: After “explicit,” insert “whether it is a pointer,”.] 244:23

3 Edits - Item 3

This one is done separately so we can vote on it separately. Maybe there is a subtle reason for
the status quo. Malcolm doesn’t like this proposal because prohibiting nonrecursive procedures
to have explicit interfaces from within themselves makes it difficult to use them as dummy
arguments from within themselves, and therefore difficult to cause an erroneous recursion by
mistake.
[Editor: Delete “recursive” twice.] 245~4-5

5 May 2000 Page 1 of 1 J3/00-172

Subject: Issue 263
From: Van Snyder
References: 00-179

1 Introduction

The editor doesn’t like the wording of section 2.2.3.4. Here’s different wording.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

The purpose of an interface block is to describe the interfaces (12.3) to a set of procedures, 13:4-7
and the forms of reference by which a procedure may be invoked (12.4). It may be used to
specify that a procedure may be invoked:

(1) By using a generic name,

(2) By using a defined operator,

(3) By using a defined assignment, or

(4) For derived-type input/output.

[but don’t do the last one if the “radical proposal” in 00-179 passes.]

[Editor: Delete issue 263.1 13~8-12

5 May 2000 Page 1 of 1 J3/00-173

Subject: Issue 262
From: Van Snyder

1 Introduction

The editor notes that the usage of the term intrinsic is contradictory.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

[Editor: after “intrinsic” insert “has two meanings. The first”.] 19:34

[Editor: At the end of the paragraph, insert “The second use of the qualifier applies to proce- 19:37
dures that are provided by a processor but whose names are not listed in section 13.13, 13.14,
13.15, or modules that are provided by a processor but whose names are not listed in section
13.17, 15 or 16.1. Such procedures and modules are called nonstandard intrinsic procedures and
nonstandard intrinsic modules, respectively.” Editor: Should nonstandard intrinsic procedures
and nonstandard intrinsic modules be set in bold face type? If so, are they required to have
index and glossary entries?]

[Editor: Delete issue 262.1 20~1-7

5 May 2000 Page 1 of 1 J3/00-174

Subject: Issue 236
From: Van Snyder

1 Introduction

The editor finds the placement of the discussion of the kind of type parameter values to be
misplaced, and the transition from discussion to syntax to be clumsy.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

[Editor: Move [32:33-341 to [55:25+], and insert the following in its place:] 32133-34
A type parameter value may be specified within a type specification (5.1).

[Editor: Delete issue 236.1 33:l-16

5 May 2000 Page 1 of 1 J3/00-175

Subject: Issue 268
From: Van Snyder

1 Introduction

The editor finds the placement of two constraints confusing. The proposed repair is to move
two syntax rules, instead.

2 Edits

Edits refer to 00-0071-1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

[Editor: Delete issue 268.1 43:ll-19

[Editor: Move to [42:41+].] 43:23-24

[Editor: Move to [42:43+].] 43:25-26

5 May 2000 Page 1 of 1 J3/00-176

Subject: Issue 269
From: Van Snyder

1 Introduction

The constraints on passed-object dummy arguments are intentionally slightly different, because
they apply in different circumstances. One applies to procedure pointer components, one applies
to abstract interfaces, and one applies to a procedure named in a binding.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and 3 in the text.

[Editor: Copy this sentence to [44:25+].] 44:9

[Editor: Copy the constraint at [44:32-331 to here.] 44:9+

[Editor: set “passed-object dummy argument” in bold face type - this is another definition.] 44:24

[Editor: Move this constraint to [45:4-1.1 44:32-33

[Editor: Delete issue 269.1 44:34-42

[Editor: Move to [45:3+].] 44:43

[Editor: After “procedure-name” insert “or procedure name implied by binding-name if binding 44:46
is not specified” .]

[Editor: set “passed-object dummy argument” in bold face type - this is another definition.] 45:2

5 May 2000 Page 1 of 1 J3/00-177

Subject: Issue 7
From: Van Snyder

1 Introduction

The editor is correct that the last sentence of the paragraph at [104:21-241 is redundant to
material in 6.3.3.1, and not quite correct anyway.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and 3 in the text.

[Editor: Delete the sentence beginning “If the object....”] 104:21-24

[Editor: Delete issue 7.1 104:25-29

5 May 2000 Page 1 of 1 J3/00-178

Subject: More work on SELECT TYPE and ASSOCIATE
From: Van Snyder

1 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

[Editor: Insert “other than a SELECT TYPE (8.1.4.1) or ASSOCIATE (8.1.5.1) statement” 107:21
after “statement”. (We don’t want the selector deallocated before the block is executed.)]

[Now handle the selector.] 107:24+
If a SELECT TYPE (8.1.4.1) or ASSOCIATE (8.1.5.1) statement references a function whose
result is allocatable or a structure with a subobject that is allocatable, and the function reference
is executed, an allocatable result and any subobjects that are allocated allocatable entities in
the result returned by the function are deallocated after execution of the construct.

[Editor: Replace “type” by “declared type, dynamic type, and” (Make it clear that assuming 154:21
the type means assuming both the declared and dynamic type).]

5 May 2000 Page 1 of 3 J3/00-179

Subject: Derived-type input/output and its relation to type-bound procedures
From: Van Snyder
References: 00-186

1 Introduction

There are several problems with derived-type input/output that could be addressed by a minor
extension to the type-bound procedure mechanism: It is possible to access a type from a module,
but not access its input/output procedures, and it is not possible to inherit, override or defer a
derived-type input/output procedure.
This paper depends on paper 00-186. It should be processed, if at all, after that paper passes,
or another one that specifies how kind type parameters interact with type-bound procedure
invocation passes.

2 Proposed change

Replace the interface-block-based mechanism to specify derived-type input/output procedures
by a variation on the type-bound procedure declaration mechanism, e.g.

PROCEDURE, READ(F0RMATTED) => myzeadlout inefosmat ted
serves the same purpose as the interface block at [190:41]. Obviously similar extensions provide
for unformatted input and for output. This binding cannot be excluded during use association,
is inherited into extension types, can be overridden in them, and an obvious variation allows
deferred derived-type input/output procedures to be specified.
The advantage of this approach is that it solves the problems noted above. The disadvantage
(or another advantage, depending on your point of view) is that it does not allow a derived-type
input/output procedure to be a dummy argument or a procedure pointer.

3 Edits

Edits refer to 00-0071-1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and 3 in the text.

or PROCEDURE (proc-interface-name) , W 44:18+

or PROCEDURE, dtio-binding-attr => W
w dtio-binding-attr => NULL()

w dtio-binding"

[Editor: Add to the constraint:] 44:25
If proc-interface-name and dtio-binding-attr are both specified, the interface shall specify a
subroutine having an explicit interface as specified for the same dtio-binding-attr in section
9.5.4.4.3.
R442b dtio- binding-attr is READ(F0RMATTED) 45:3+

5 May 2000 Page 2 of 3 J3/00-179

R442c dtio-binding

or READ(UNF0RMATTED)
or WRITE(F0RMATTED)
or WRITE(UNF0RMATTED)
is procedure-name
or NULL(procedure-name)
or NULL(procedure-pointer-name)

Constraint: The procedure-name shall specify an accessible module procedure or external pro-
cedure. The procedure-pointer-name shall specify an accessible procedure pointer.
The procedure-name or procedure-pointer-name shall have an explicit interface as
specified for the same dtio-binding-attr in 9.5.4.4.3.

Constraint: If several specific or deferred (4.5.1.5) procedures are specified for a single dtio-

Note 4.19;
binding-attr, their interfaces shall differ as specified in 14.1.2.3.

The interfaces are specified nearly completely in section 9.5.4.4.3. The only latitude for differ-
ences is that, for a particular type and dtio-binding-attr, the derived type dummy arguments
can have different kind type parameters.

4.5.1.5.2 Derived-type input/output subroutine
A procedure binding with a dtio-binding-attr specifies a user-defined derived-type input/output
subroutine. Its use and the characteristics it shall have are described in 9.5.4.4.3. The set of
user-defined derived-type input/output subroutines that are bound to the type or that are
inherited (4.5.3.1) from the parent type and not overriden (4.5.3.2) is a generic interface.

49:30+

[Editor: Insert a new paragraph, not within note 4.44:]
If a procedure binding declared in a type definition has the same dtio-binding-attr and the same
kind type parameters for the derived-type argument as one inherited from the parent type then
the binding declared in the type overrides the one inherited from the parent type. Otherwise
it extends the generic interface for the declared type and specified dtio-binding-attr.

54:45+

[Editor: Replace “any procedure ... matches” by “an external or module subroutine, bound
to the type by a procedure binding with a dtio-binding-attr as specified in section 4.5.1. Its
interface shall match’ .]

189:26

[Editor: Replace “pro~edure’~ by “subroutine” .]

[Editor: After “transferred” insert “, as described in 14.1.2.4.2$”.]

[Editor: Replace “When an interface ... scoping unit” by “If a derived-type input/output
procedure is selected as specified in the previous paragraph”.]

(1) If the dtio-binding-attr is READ (FORMATTED):

(2) If the dtio-binding-attr is READ (UNFORMATTED):

(3) If the dtio-binding-attr is WRITE (FORMATTED):

(4) If the dtio-binding-attr is WRITE (UNFORMATTED):

[Editor: Delete.]

[Editor: Delete.]

189:28

189:30

189131-32

190:26

190141-42

191:2-3

191:18-19

191:30

246119-22

249:18-20

251111-19

[Editor: Delete.]

[Editor: Delete.]

5 May 2000 Page 3 of 3 J3/00-179

14.1.2.4.2i Resolving derived-type input/output procedure references 346:22+
The effective set of input/output procedures for a type and dtio-binding-attr is the set of pro-
cedures inherited for that dtio-binding-attr from the parent of the type, minus the overridden
ones, plus the ones declared in the type. Each procedure in an effective set has a correspond-
ing one in each effective set for each extension type - either the same procedure or one that
overrides it. Each effective set is a generic interface.
A derived-type input/output procedure for one of the four kinds of data transfer specified in
9.5.4.4.3 and a particular type of list item is selected as follows:

(1) At most one procedure is selected from the effective set of procedures for the dtio-binding-
attr and the declared type of the list item, according to the generic resolution rules
(14.1.2.4.1).

(2) If a procedure is selected in step (l) , the reference is to the procedure from the effective
set, for the dtio-binding-attr and the dynamic type of the list item, that corresponds to
the procedure selected in step (1). Otherwise, intrinsic input/output is used.

If the reference is to a deferred binding, an error condition occurs.

6 May 2000 Page 1 of 4 J3/00-180

Subject: Define “component order” term, issues 17-19 and 211, more work on constructors
From: Van Snyder
References: 00-148, 00-152

1 Introduction

In paper 00-148, Malcolm addressed issues 17-19 and 211. In paper 00-152, I addressed the
definition of the “component order” term. This paper combines those two papers.
Concerning issues 17-19 and 211, Malcolm wrote in paper 00-148:

Issue 17 says

“ ... I’m bothered by having a component name that isn’t the name of
a component. Perhaps we should use a different terminology such as
subobject name”

I concur.

Issue 18 says

“Should the above not be a constraint? Fix up Grandparents.”

The answer to the question is “No,” but it ought to be part of our scoping rules
(which do have similar status as constraints in requiring violation to be diagnosed).

I concur with the second commandment.

Issue 19 says

“but the name ... is not a component”

ok, ok already

Issue 211 says

‘‘ ‘flattened form’ is used .. . but ... nowhere defined”

I concur.

Paper 00-148 introduced the term “subobject name.” This paper instead expands on the
definition of “subobject”, which is defined only superficially at [16:23-281. The term “subobject
name” then follows from the term “subobject.”
Section 4.5.6 Construction of derived-type values doesn’t work for extended types. Section
4.5.3.1 Inheritance defines the order of components of an extended type, for purposes of
derived-type value construction and intrinsic input/output, but doesn’t define the term.
This paper defines the term “subobject order” for nonextensible, base and extended types, and
uses the term for value construction and intrinsic input/output.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while k page and line number followed by +

6 May 2000 Page 2 of 4 J3/00-180

indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

Ultimately, a nonextensible or base derived type is resolved into ultimate components that
are either of intrinsic type or have the ALLOCATABLE or POINTER attribute. An extended
type may be resolved into ultimate subobjects (4.5.3.1) if subobjects of the parent subobject
are to be included, or ultimate components if subobjects of the parent subobject are not to be
included.
[Editor: Delete “For to the end of the paragraph.]

[Define a term for the parent subobject.]
An extended type has a parent subobject with the type and type parameters of the parent
type, consisting of all of the subobjects inherited from the parent type. The name of the parent
subobject is the parent type name.

[Editor: Delete issue 17. We no longer call the name of the parent subobject the “component
name.”]

[Editor: Replace “subobject denoted by the parent type name” with “parent subobject name”.
(Improve readability by using the newly coined term.)]

[Editor: Insert a new paragraph. Add this instance of “subobject” to the index.]
The subobjects of a nonextensible type or of a base type are its components. The subobjects
of an extended type are the parent subobject, subobjects of the parent subobject, and the
additional components declared, if any.
The ultimate subobjects of a nonextensible type or of a base type are its ultimate compo-
nents. The ultimate subobjects of an extended type are the ultimate subobjects of the parent
subobject, and the ultimate subobjects of additional components declared, if any.
This extends the definition of the term “subobje~t~~ and thereby defines the term “subobject
name.” We use “subobject7’ instead of “component” when we want to include parent subob-
ject(s). Note that it is defined recursively so that “grandparent” subobjects are included.

[Editor: Replace “have neither” with “not have”. Replace “accessible component” with “acces-
sible subobject”. Delete “nor ... type”. Make the whole thing a note. (Use our new terminology;
make it a note because it will be covered by the scoping rules in section 14.)]

[Editor: Delete issue 18.1

4.5.3; Subobject order
[Editor: Insert “subobject order” into the index.]
The subobject order of the subobjects of a derived type is the subobject order of the parent
subobject, if the type is an extended type and the parent type has subobjects, followed by the
order of the declarations of components declared in the derived type definition.
The subobject order of the ultimate subobjects of a derived type is the order of the ultimate
subobjects of the parent subobject, if the type is an extended type and the parent type has
subobjects, followed by the order of the declarations of components that are of intrinsic type,
and the ultimate subobjects that result from declarations of components of the derived type,
taken in the order the declarations appear in the derived type definition.

The structure constructor for any derived type may be in flattened form, in which values may
be provided for subobjects inherited from the parent type, if any. The structure constructor for
an extended type may be in nested form, which allows providing a single value for the parent

41:21-22

53115-18

53122-24

53:25-34

53:35

53:37+

Note to J3

53~38-40

53:41-43

55:0+

55:29+

6 May 2000 Page 3 of 4 J3/00-180

subobject.

Constraint: The type name and all subobjects of the type shall be accessible in the scoping 55:32-56:4
unit containing the structure constructor.

Constraint: In the flattened form, there shall be at most one component-spec corresponding
to each subobject of the type other than the parent subobject and no component-
spec corresponding to the parent subobject. In the nested form, there shall be at
most one component-spec corresponding to the parent subobject, and at most one
component-spec corresponding to each component declared for the extended type.

Constraint: In the flattened form, there shall be exactly one component-spec corresponding to
each subobject of the type, other than the parent subobject, that does not have
default initialization. In the nested form, there shall be exactly one component-spec
corresponding to the parent subobject of the type, and exactly one component-spec
corresponding to each component declared for the extended type that does not
have default initialization.

Constraint: The keyword = may be omitted from a component-spec only if the keyword = has
been omitted from each preceeding component-spec in the constructor.

Constraint: In the flattened form, each keyword shall be the name of a subobject of the type.
In the nested form, each keyword shall be the name of a component declared for
the extended type, or the name of the parent subobject.

If the first component-spec has no keyword and the type of the expr is the same as the parent
type, or if there is a component-spec with a keyword that is the same as the parent subobject
name, the constructor is in nested form. Otherwise, the constructor is in flattened form.
In the nested form, in the absence of a component name keyword, the first expr is assigned
to the parent subobject, the second expr is assigned to the first component declared in the
derived type definition, and each subsequent expr is assigned to the sequentially corresponding
component declared in the derived type definition.
In the flattened form, in the absence of a component name keyword, each expr is assigned to
the corresponding subobject of the type, with the subobjects taken in subobject order (4.5.3;).
If the keyword is the same as the parent subobject name, the expr is assigned to the parent
subobject; otherwise the expr is assigned to the subobject named by the keyword.

[Note to Editor: This includes deleting issues 19 and 211.1 56:7-20
The value that corresponds to the parent subobject is assigned to the parent subobject using
intrinsic assignment.
For nonpointer components, the corresponding value is assigned to the corresponding subobject
using intrinsic assignment (7.5.1.4).

The previous semantics were “converted according to the rules of intrinsic assignment to a Note t o J 3
value that has the same type and type parameters as the corresponding component. The
shape of the expression shall correspond to the shape of the component.” Since this didn’t
say it did intrinsic assignment, there’s some question how it handles pointer and allocatable
components of a derived type component value. The revision clarifies this, and also allows a
scalar expr to be assigned to an array component.

For pointer components, the corresponding expr shall evaluate to an object that would be an
allowable target for such a pointer in a pointer assignment statement (7.5.2), and it is assigned
to the component using pointer assignment.

6 May 2000 Page 4 of 4 J3/00-180

[Editor: Delete.] 5711-3

[Editor: Replace “component” with “subobject”. (This now includes subobjects inherited from 87:41
the parent type in the case of objects of extended type.)]

[Editor: Replace “component” with “subobject”. (This now includes subobjects inherited from 89:3
the parent type in the case of objects of extended type.)]

[Editor: Replace “component” with “subobject”. (This now includes subobjects inherited from 91:lO
the parent type in the case of objects of extended type.)]

[Editor: Replace “name of a component” with “subobject name”. (Make parent subobjects 96:37
usable) .]
[Editor: Replace “components” with “~ubobjects~’. (This now includes subobjects inherited
from the parent type in the case of objects of extended type.)]

[Editor: Replace “component ultimately in the object” with “ultimate subobject”. (Th‘ IS now
includes subobjects inherited from the parent type in the case of objects of extended type.)]

[Editor: Replace “component” with “subobject” twice. (This now includes subobjects inherited
from the parent type in the case of objects of extended type.)]

[Editor: Replace “in the same ... unless” by “in the subobject order (4.5.34) of the ultimate
subobjects unless.”

[Editor: Replace “components ... comprise” by “effective items (9.5.2) that result from expand-
ing’’.]

[Editor: Replace “components, and binding names” with “bindings, and named subobjects”.
(Move scoping requirements from section 4 to section 14).]

ultimate subobject (4.5.3): For a derived type or a structure, a subobject that is of intr insic
type, has the ALLOCATABLE attribute, or has the POINTER attribute, or an ultimate sub-
object of a subobject that is of derived type and does not have the ALLOCATABLE attribute
or the POINTER attribute.
[Editor: Insert a new paragraph:]
A subobject of a nonextensible type or of a base type is the same as a component. A subobject
of an extended type is the parent subobject, a subobject of the parent type, or a component of
the extended type. The distinction between an ultimate component and an ultimate subobject
is that an ultimate subobject might arise from the parent subobject, whereas an ultimate
component cannot. Consider the following example:

TYPE, EXTENSIBLE : : POINT
REAL : : X , Y

END TYPE POINT

TYPE, EXTENDS(POINT1 : : PERSON-POINT
TYPE(PERS0N) : : WHO

END TYPE COLOR-POINT

103:44

183129-30

183:34

183:38-39

188:44

342:5

407:22+

416:24+

The only component of PERSONPOINT is WHO. The subobjects of PERSONPOINT are X , Y , POINT
and WHO. The ultimate subobjects of PERSONPOINT are X , Y , NAME and AGE.

6 May 2000 Page 1 of 1 J3/00-181

Subject: A problem I had in converting Fortran 77 to Fortran 95
From: Van Snyder

1 Introduction

I was given 463 files of Fortran 77 external procedures to convert to Fortran 95 module proce-
dures. This was a library of mathematical software, without much inter-procedure interaction,
so I wouldn’t need to insert many USE statements. I thought I would have an easy time if I
made a module for each procedure:

module xyz-module
contains

include ’xyz.f’
end module xyz-module

and then added a few USE statements.
Unfortunately, I stumbled over the constraints at [267:9-101 and [269:5-61, that require END
FUNCTION and END SUBROUTINE instead of simply END for module procedures.
A simple per1 script could have fixed the END statements, but then I would have two files to
maintain.
When I first saw these constraints, probably In 1988, I thought they were a good idea. Now,
I’m having second thoughts. Can we remove the “or module” parts? It wouldn’t invalidate any
existing program.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

[Editor: Delete “or module” .] 267:9-10

[Editor: Delete “or module” .] 269:5-6

6 May 2000 Page 1 of 1 J3/00-182

Subject: Issue 266
From: Van Snyder

1 Introduction

Issue 266 points out that “polymorphic objects” are defined, but in several instances we refer
at least indirectly to polymorphic entities. Polymorphism should be defined by reference to
entities, not objects.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and 3 in the text.

[Editor: Replace “objects” by “entities” and “object” by “entity” .] 69123-24

[Editor: Delete Issue 266.1 69:28-37

[Editor: Replace “objects” by “entities”. Don’t replace “unlimited polymorphic object” by 69:42
“unlimited polymorphic entity” ~ I don’t think we have any of the latter.]

[Editor: Replace “object” by “entity” and “objects” by “entities” throughout - several times 69:43-45
for each.]

6 May 2000 Page 1 of 1 J3/00-183

Subject: Part of issue 237
From: Van Snyder

1 Introduction

In issue 237, the editor remarks that COMPATIBLE rounding is exactly specified, but NEAR-
EST rounding is not. This paper attempts to define the NEAREST rounding mode as precisely
as is the COMPATIBLE rounding mode.

2 Edits

Edits refer to 00-0071-1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

[Editor: Replace “correspond ... IEEE standard” by “be the closer of the two nearest repre- 224:39-40
sentable values, or the even value if halfway between them.”]

[Editor: Replace “On processors ... the” by “The” .] 225:2

[Editor: Delete the part of issue 237 that this paper addresses.] 225:8-15

6 May 2000 Page 1 of 1 J3/00-184

Subject: Issue 258
From: Van Snyder

1 Introduction

In issue 258, the editor remarked that several sentences concerning program arguments are
confusing and misplaced. This paper rewords them (and a few others that were more clumsy
or less precise than necessary), and re-arranges some things to be clearer.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

[(State in terms of assignment, so that trailing blanks get filled automatically):] 236:22-23
The processor shall assign a representation of the entire command that invoked the program to
the command program argument.

[Editor: Replace “The argument ... command name” by the following (state in terms of assign- 236:27-28
ment, so that trailing blanks get filled automatically):]
The processor shall assign a representation of the command name and the command arguments
to the argument text program argument.

[Editor: Insert a new paragraph:] 236:29+
The processor shall insure that the length of the argument text program argument is not less
than the maximum value of any element of the argument length program argument.

[Editor: Delete.] 236:36-40

[Editor: Delete issue 258.1 237:6-19

6 May 2000 Page 1 of 1 J3/00-185

Subject: More work on extensible derived type definitions
From: Van Snyder
References: 00-175 00-180

1 Introduction

Malcolm says this paper is entirely unnecessary - it’s covered by the scoping rules of section
14.1.2, which have constraint status, at least if the parent subobject material is sorted out, as
00-180 attempts to do.
This paper depends on some re-arrangement of text resulting from paper 00-175.
There is no constraint that a component name cannot appear more than once within a single
derived type definition. Maybe the constraint at [64:16] covers that. Nonetheless, we need
constraints against duplicating the parent type name, against duplicating the names of any
components inherited from the parent type, against duplicating a type parameter name, and
against duplicating a procedure binding.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

Constraint: No type-param-name shall appear more than once in the type-param-name-list . 42:10+
Constraint: No type-param-name shall be the same as the parent type name, or any component

name, type parameter name, or procedure binding name inherited (4.5.3.1) from
the parent type.

[Editor: The next two constraints apply to the syntax rule for component-decl, which will be 42:44-
moved to be above this point by 00-175.1
Constraint: No component-name shall appear more than once in all of the component-decl-lists

within a single derived type.
Constraint: No component-name shall be the same as the parent type name, or any type-param-

n a m e , or any component name, type parameter name, or procedure binding name
inherited (4.5.3.1) from the parent type.

Constraint: No proc-binding-name shall appear more than once in all of the proc-bindings within 44:18+
a single derived type definition.

Constraint: No proc-binding shall be the same as the parent type name, or any type-parum-
n a m e , or any component name or type parameter name inherited (4.5.3.1) from
the parent type.

6 May 2000 Page 1 of 6 J3/00-186

Subject: Semantics of the select kind construct are not described, and it appears to be a
mess to use

From: Van Snyder
References: 98-179, 00-179, 00-195

1 Introduction

The select kind construct, apparently intended to be used within a derived type definition to
select different specific procedures to invoke using an object of derived type, depending on the
kind parameters, is not described further than providing its syntax. In particular, the relation
between select kind, inheritance, and procedure overriding is not described.
Furthermore, if I understand it correctly, it is quite cumbersome to use. Suppose one has a
type with three kind parameters, and one anticipates three values for each of those parameters.
If one procedure is needed for each combination of kind type parameter values, this results in
a requirement to bind 27 procedures to the type. It appears to require 92 statements to do
so, using the select kind construct: Three nested select kind constructs are needed. The inner
ones needs 8 statements each - the SELECT CASE and END SELECT statements, 3 CASE
statements, and 3 procedure declaration statements. Each middle one encloses three of these,
and adds five more statements, for a total of 29 statements per middle level case. The outer
one has three middle ones, and adds five more statements, for a total of 92 statements. The
proposal here would allow to use one statement ~ albeit perhaps using more than one line, but
not 92 lines.
As I understand it, this is a very clumsy explicit replacement for the automatic generic resolution
mechanism. (Actually, the intent is to specify how to generate dispatch tables, but the generic
mechanism could do that more clearly.)
I propose in this paper to replace the select kind construct with the already-developed generic
resolution mechanism.
This strategy has a simple extension to type-bound defined assignment, type-bound defined
operators, type-bound derived-type input/output procedures (see 00-179), and type-bound final
procedures (see 00- 195).

2 Specifications

Several specific procedures may be bound to a type by using one binding name. The spe-
cific procedures bound to (not inherited into) a single type-bound procedure name shall be
distinguishable according to the rules for unambiguous generic procedure reference (14.1.2.3).
The PASS-OBJ declaration applies to the binding name, and thereby to all of the specific
procedures bound to the type, and all of its extensions, by that name, so we don’t need to
worry about the case that a binding name has PASS-OBJ in the parent type but not in the
type being declared, or vice-versa.
The rules for overriding are not much more difficult than in the case of nongeneric type-bound
procedures. We don’t have an explanation for the semantics of the select kind construct, but
I don’t think it will be similer than this: If a specific procedure to be bound to a type by a
particular binding name is not distinguishable from one bound to the parent by the same name,
by using the rules of section 14.1.2.3, it overrides the one inherited from the parent. Otherwise, it

6 May 2000 Page 2 of 6 J3/00-186

extends the set of procedures accessible by applying the generic procedure resolution mechanism
to the binding name.
Now consider procedure invocation. Define the egectiwe set of procedures for a type and binding
name to be the set of procedures inherited for that binding name from the parent of the type,
minus the overridden ones, plus the ones declared in the type. Each procedure in an effective set
has a corresponding one in each effective set for each extension type - either the same procedure
or one that overrides it. First, one procedure is selected from the effective set of procedures for
the declared type of the invoking object and specified binding name, according to the generic
resolution rules. Then the corresponding procedure from the effective set for the dynamic type
of the invoking object and the same binding name is invoked. From an implementors point of
view, there is a separate dispatch table for each distinct generic resolution of a binding name.

3 Syntax

There are (at least) two syntaxes to specify generic type-bound procedures: '

1. Specify all procedure bindings by using the PROCEDURE statement. If several bindings
have the same binding name, they create a generic set. This has the advantage of using
only one statement, but the disadvantage of not noticing that overriding was intended
instead of generic extension.

2. Specify non-generic procedure bindings by using the PROCEDURE statement, and gen-
eric bindings by using a new GENERIC statement. This has the disadvantage of requiring
a new statement, and the advantage that the processor can detect one case in which one
mistakenly extends the generic set instead of overriding a non-generic binding ~ the case
when the name is already non-generic.

3.1 Syntax - first option

The proc-binding is extended to
R440 proc-binding is PROCEDURE[(proc-interface-name)] W

w [[, binding-attr-list] :: 3 binding-name W
W => NULL()

binding-name => procedure-name-list
or PROCEDURE [[, binding-attr-list] ::] W

A binding-name specified in a PROCEDURE statement may be the same as the binding name
specified in another PROCEDURE statement, having the same effect as if the procedure-name-
lists were combined in a single statement.

3.2 Syntax - second option

The PROCEDURE statement is unchanged, and the proc-binding is extended to include
R440 proc-binding is <as at present>

or GENERIC[(proc-interface-name)]
w [[, binding-attr-list] ::] binding-name w

=> NULL()

6 May 2000 Page 3 of 6 J3/00-186

or GENERIC [[, binding-attr-list] ::] W
w binding-name => procedure-name-list

A binding-name specified in a PROCEDURE statement shall not be the same as any other
binding name specified within the same derived type definition, no matter whether specified
in a PROCEDURE or GENERIC statement; if it is the same as an inherited one, the present
overriding rules apply - no extension of a generic set is permitted. A binding name specified in
a GENERIC statement may be the same as the binding name specified in another GENERIC
statement, having the same effect as if the procedure-name-lists were combined in a single
statement.

3.3 Straw vote

1 (a) Use the PROCEDURE statement to specify all type-bound procedure bindings, I Straw . .

(b) Use the PROCEDURE statement to specify non-generic type-bound procedure bindings, I Vote
and the GENERIC statement to specify generic type-bound procedure bindings, or

(c) Don’t do this at all. Try to make the select kind construct work instead. I dare you to
try.

4 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and 3 in the text. - first option
There are additional edits in section 6 that apply to both options.

R440 proc-binding is PROCEDURE(proc-interface-name) 44~17-20
w [[, binding-attr-list] ::] b inding-name W
W => NULL()

w binding-name => binding-list
or PROCEDURE [[, binding-attr-list] ::]

Constraint: The binding name shall not be the same as a binding name in the parent type that
is declared to be NON-OVERRIDABLE.

Constraint: If an access-spec is specified for a binding-name, the same access-spec shall be 44:31+
specified for every PROCEDURE statement that specifies the same binding-name
within the type definition.

The same binding name may be used in several procedure binding statements within a single 49:30+
type definition. The effect is as if all of the NULL() bindings were specified by NULL(procedu7-e-
po in ter -name) with procedure-pointer-name specifying a procedure pointer with the same inter-
face as the proc-interface-name, and then all the bindings were specified by a single statement.

A procedure binding declared within a derived type definition overrides one inherited from the 54:ll-16
parent type if:

(1) The binding declared in the type has the same binding name as one inherited from the

6 May 2000 Page 4 of 6 J3/00-186

parent type, and

(2) the specific or deferred procedure to be bound to the type by a particular binding name
is not distinguishable, by using the rules of section 14.1.2.3, from one inherited from the
parent and bound to the same binding name.

Otherwise, it extends the set of procedures accessible by applying the generic procedure reso-
lution mechanism (14.1.2.4.2;) to the binding name. If a binding overrides one inherited from
the parent, it and the inherited one shall match in the following ways:

5 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text. - second option
There are additional edits in section 6 that apply to both options.

R440 proc-binding is PROCEDURE(proc-interjace-name) rn 44~17-20
rn [[, binding-attr-list] ::] binding-name rn
rn => NULL()

rn binding-name => binding

[[, binding-attr-list] ::] binding-name
=> NULL()

rn binding-name => binding-list

or PROCEDURE [E , binding-attr-list] :: 3 rn

or GENERIC(proc-interface-name) rn

or GENERIC [[, binding-attr-list] ::]

Constraint: The binding name shall not be the same as a binding name in the parent type that

Constraint: If a binding name is inherited (4.5.3.2) from the parent type, then the binding name
inherited from the parent type and the one being declared shall both be declared
with GENERIC or both be declared with PROCEDURE.

is declared to be NON-OVERRIDABLE.

Constraint: If an access-spec is specified for a binding-name, the same access-spec shall be spec- 44:31+
ified for every GENERIC statement that specifies the same binding-name within
the type definition.

The same binding name may be used in several GENERIC procedure binding statements 49:30+
within a single type definition. The effect is as if all of the NULL() bindings were specified
by NULL(procedure-pointer-name) with procedure-pointer-name specifying a procedure pointer
with the same interface as the proc-interface-name, and then all the bindings were specified by
a single statement.

A procedure binding declared within a derived type definition overrides one inherited from the 54:ll-16
parent type if

(1) The binding declared in the type has the same binding name as one inherited from the
parent type, and

6 May 2000 Page 5 of 6 J3/00-186

(2) it is declared using GENERIC and the specific or deferred procedure to be bound to the
type by a particular binding name is not distinguishable, by using the rules of section
14.1.2.3, from one inherited from the parent and bound to the same binding name.

Otherwise, it extends the set of procedures accessible by applying the generic procedure reso-
lution mechanism (14.1.2.4.2;) to the binding name. If a binding overrides one inherited from
the parent, it and the inherited one shall match in the following ways:

6 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.- both options

Constraint:

Constraint:

Constraint:

The following edits are needed to implement generic type bound procedures, no matter what
syntax is chosen.

proc-binding 44112-13
[proc-binding] ...

[Editor: Delete.] 44~15-16

If the binding name is the same as one inherited from the parent type, PASS-OBJ 44:31+
shall be specified if and only if it is specified for the binding of the same name in
the parent type.
If PASS-OBJ is specified for a binding name in one procedure binding within the
derived type declaration, it shall be specified in all procedure bindings for that
binding name within the derived type declaration.
If NON-OVERRIDABLE is specified for a binding name in one procedure binding
within the derived type declaration, it shall be specified in all procedure bindings
for that binding name within the derived type declaration.

or NULL(procedure-name)
or NULL(procedure-pointer-name)

[Editor: Replace “procedure that has” by “procedure. The procedure-pointer-name shall be
the name of an accessible procedure pointer. The procedure or procedure pointer shall have”.
After the second insert “or procedure pointer” .]

[Editor: Delete.]

[Editor: Replace “deferred” with “a deferred procedure binding” .]

may override (4.5.3.2) the inherited deferred binding with another deferred binding.

[Editor: Delete “in that interface block”.]

[Editor: Delete “in that interface block”.]

[Editor: Add a new section. The term eflectiwe set of procedures is defined here, but not used
anywhere other than in this section. I’ve set it in italic instead of bold face, with the intention
that it’s not worth putting in the index and glossary. If you want to set it in bold face and put

44:45

44:47

45~4-13

49:26

49:29

345:7

345112-13

346:22+

6 May 2000 Page 6 of 6 J3/00-186

it in the index, that’s fine, too. If you set it in bold face, do I owe you a glossary entry?]
14.1.2.4.2; Resolving type bound procedure references
The effective set of procedures for a type and binding name is the set of procedures inherited
for that binding name from the parent of the type, minus the overridden ones, plus the ones
declared in the type. Each procedure in an effective set has a corresponding one in each effective
set for each extension type - either the same procedure or one that overrides it. For purposes
of generic resolution, the passed-object dummy argument (4.5.1) of a procedure inherited from
the parent type is considered to have the extended type into which it is inherited. Each effective
set of procedures is a generic interface.
If a type-bound procedure is specified by data-ref % binding-name in a function reference or
call statement:

(1) One procedure is selected from the effective set of procedures for the binding-name and
the declared type of the datu-ref, according to the generic resolution rules (14.1.2.4.1).

(2) The reference is to the procedure from the effective set, for the binding-name and the
dynamic type of data-ref, that corresponds to the procedure selected in step (1).

If the reference is to a deferred binding, an error condition occurs.

deferred procedure binding (4.5.1.5): a type-bound procedure binding that specifies the 400:17+
NULL() intrinsic. A deferred procedure binding shall not be invoked.

7 Straw vote about access-spec semantics

It is possible, by removing the constraint introduced at [44:31+] in sections 4 and 5 above, to
allow some bindings to be private, and some to be public, for the same binding name. This
is different from the usual rules for generic interfaces accessed from a module. Instead of the
constraint would be a note:

Note 4.19; 44:43$
It is possible for some of the bindings to a binding name to be PRIVATE and some to be
PUBLIC; it is not required that all be PRIVATE or that all be PUBLIC. Within the module
containing the derived type definition, all procedures bound to a type by a particular binding
name are candidates for access by applying the generic resolution rules to the binding name.
Without the module containing the derived type definition, only the PUBLIC procedures
bound to a type by a particular binding name are candidates for access by applying the
generic resolution rules to the binding name.

(a) Should the access-spec apply to the binding (mixed public and private), or (b) Should the Straw
access-spec apply to the binding name (all public or all private)? Vote

5 May 2000 Page 1 of 2 J3/00-187

Subject: Discussions of INTRINSIC and EXTERNAL attributes are scattered;
discussion of INTRINSIC is contradictory and repetitive

From: Van Snyder

1 Introduction

We have tried to consolidate discussion of attributes into section 5.1.2. The discussion of the
INTRINSIC attribute, however, is scattered between 5.1.2.11 and 12.3.2.4 (The INTRINSIC
statement), and the discussion of the EXTERNAL attribute is scattered between 5.1.2.10 and
12.3.2.2. Some of the discussion is contradictory - section 12.3.2.4 allows any intrinsic procedure
named in an INTRINSIC statement to be used as an actual argument, while section 5.1.2.11
limits this set to those listed in section 13.15 and not marked with a bullet (0) . Finally, some
of the discussion is repeated.

Consolidates discussion of the INTRINSIC attribute in section 5.1.2.11, and reduces sec-
tion 12.3.2.4 to stating that the INTRINSIC statement confers the INTRINSIC attribute,
and giving its syntax, and

Consolidates discussion of the EXTERNAL attribute in section 5.1.2.10, and reduces
section 12.3.2.2 by deleting material that is redundant and misleading.

Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

A dummy argument that has the EXTERNAL attribute is a dummy procedure or a dummy
procedure pointer. A name that has the EXTERNAL attribute and that is not a dummy
argument is the name of an external procedure, a procedure pointer, or a block data program
unit.
Note 5.18;
It is necessary to use an EXTERNAL statement (12.3.2.2) to specify the EXTERNAL at-
tribute for a block data program unit; it is not possible to do so in a type declaration state-
ment.

The INTRINSIC attribute confirms that a name is the specific name (13.15) or generic
name (13.13, 13.14) of an intrinsic procedure. The INTRINSIC attribute allows the specific
name of an intrinsic procedure that is listed in section 13.15 and not marked with a bullet (0)

to be used as an actual argument (12.4).
Declaring explicitly that a generic intrinsic procedure name has the INTRINSIC attribute does
not cause that name to lose its generic property.

76:39+

76141-7712

The following constraint applies to syntax rules R504 and R1214:

5 May 2000 Page 2 of 2 J3/00-187

Constraint: If the name of a generic intrinsic procedure is explicitly declared to have the IN-
TRINSIC attribute, and it is also the generic name in one or more generic interfaces
(12.3.2.1) accessible in the same scoping unit, the procedures in the interfaces and
the specific intrinsic procedures shall all be functions or all be subroutines, and
the characteristics of the specific intrinsic procedures and the procedures in the
interfaces shall differ as specified in section 14.1.2.3.

The INTRINSIC attribute may also be declared by the INTRINSIC statement (12.3.2.4).

[Editor: Delete - moved to 5.1.2.10 and stated in terms of the attribute, not the statement. The 251:43-
present wording implies that the only way to declare a dummy procedure or external procedure 252:2
is to put its name in an EXTERNAL statement. This isn’t necessarily true: The EXTERNAL
attribute can be specified by an interface body, or specified for a function in a type declaration
statement.]

[Editor: Delete misleading note. The correct story is in 5.1.2.10, which is referenced at [251:39].] 252:ll-13

[Editor: Insert “(5.1.2.11),’ after “attribute” and delete “A name ...” to the end of the para- 253:44-47
graph.]
[Editor: Delete.] 254~3-11

Constraint: If an actual argument is a name that is explicitly declared to have the INTRINSIC 255:22+
attribute, it shall not be the specific name of an intrinsic procedure that is listed
in section 13.15 and marked with a bullet (0) .

9 May 2000 Page 1 of 2 J3/00-192

Subject: Miscellaneous items
From: Van Snyder
References: 00-179

Here are several things that may or may not need attention. I don’t even offer edits (well,
sometimes I offer crappy ones). If they need attention, we can develop edits at the meeting, if
we have time, or insert unresolved issue notes.

Shouldn’t this paragraph be a constraint? 8219-12

We find here “A user-defined derived-type input/output procedure is any procedure” I think 189:26
we do not intend to allow internal and dummy procedures, or procedure pointers. The sentence
has other problems as well: It isn’t enough for a procedure to have the appropriate interface;
it needs to be specified in the appropriate interface block. The sentence doesn’t contribute
anything that’s not said elsewhere in the section. Delete it. If not, at least make it consistent
with the constraint at [246:30-311. Also note that one of the proposals in paper 00-179 is
to replace the interface-block-based derived-type input/output procedure specification by one
based on type-bound procedures.

Everything in 11.1.2 is said elsewhere, frequently as a constraint. Can we delete section 11.1.2? 237:42-45

Not needed - it’s covered by 14.1.2.3. 246:35-36

Do we need to add after “entity,” or was the intent to restrict IMPORT to work 246:39
only for entities declared within the scoping unit containing the interface body?

The part is not true for abstract interface blocks. 247:3-4

We may want to point out in a comment that because argument B1 has assumed shape and 250:4-5
argument B2 does not, a non-contiguous array section can be the actual argument associated
with B1, but a non-contiguous array section cannot be the actual argument associated with B2.

It would be convenient to be able to use any accessible explicit interface to declare the interface 252:19+
for a procedure pointer. Could we add “or procedure-name” as an additional right-hand side
for R1211? We would also need to replace “consists ... pointers” by “and specifies an explicit
specific interface, the declared procedures or procedure pointers have the same explicit specific
interface” at [253:7].

The phrase “an elemental intrinsic actual procedure may be associated with a dummy argument 260:9-10
that is not elemental” leads one to believe that dummy arguments can be elemental. The part
“that is not elemental” should be removed. Three possibilities for what to do next are (1)
nothing, (2) add a parenthetic remark “(which cannot be elemental)”, or (3) put in a note
12.27; to the effect that dummy arguments cannot be elemental.

We could get rid of “other than as the argument of the PRESENT intrinsic function” by making 261:12-23
the argument of the PRESENT intrinsic function optional.

I think the reason for this condition is to provide bounds for the elemental-ness. If so, this 261:15-17
condition is too strong (the dummy argument of the elemental procedure can’t be optional),
and not strong enough (the specified array doesn’t necessarily provide the desired bounds). It
should be “ ... unless an array of the same rank that is (1) not a dummy argument or is a
present dummy argument, (2) not an unallocated allocatable array, and (3) not a disassociated
pointer, is supplied as an actual argument of that elemental procedure.”

There is at least one, and maybe two problems here. In the phrase “correspond by name to a 343:34-35

9 May 2000 Page 2 of 2 J3/00-192

dummy argument not present” does “not present” mean “not declared,” or “it has the optional
attribute and there is no associated actual argument?” I think it’s the former, but we do have a
section with the phrase “dummy arguments not present” in its title - and it refers to the latter.
The wording should be revised to avoid this confusion. In the former case, it is impossible for a
nonoptional dummy argument to correspond by name to a dummy argument not present. The
dummy argument that is not present clearly doesn’t have a name.

The sentence “If a generic ...” conflicts with, or at least belongs in [344:25-261. 343:42-44

Not needed, because of [344:40] and the new language in 5.1.2.10 that specifies that an interface 344:35
body confers the EXTERNAL attribute. Perhaps [344:40] should be re-worded “(d) if there is
an explicit specification of the EXTERNAL attribute (5.1.2.10) in that scoping unit”.

5 May 2000 Page 1 of 2 53/00-193

Subject: One more try at a READONLY attribute
From: Van Snyder
References: 00-169 00-192

1 Introduction

The people I work with, who pay the bill for me to participate in J3 meetings, have asked me
again about a READONLY attribute for module variables. I mentioned that it had foundered
on the name: “Hmmm, READONLY ... does that mean it can only appear in a read statement?”
Several other names were suggested for the attribute: LIMITED, SEMIPRIVATE (with and
without an underscore) and PROTECTED.
I’ll use LIMITED here, because it’s the shortest one. If the proposed specification is accepted,
we can have a straw vote on the spelling.
I propose here that we add an attribute, however spelled, that a named variable cannot be
changed, and the pointer association status of a pointer cannot be changed, in scoping units
that access the variable by use association. By stretching our imaginations a little bit, we can
put it under the aegis of work plan item R4, which I thought had been changed to be something
like “Improving modules so that it’s easier to use modules to implement new abstract data types
efficiently,” but the work plan (00-010) still says “Interval Arithmetic.”

2 Specification

Add an attribute and statement that specifies that a named variable cannot be changed, and
the pointer association status of a pointer cannot be changed, in scoping units that access the
variable by use association.

3 Syntax

Except for spelling, the syntax is obvious: An attribute and statement, spelled with the same
keyword. Straw vote: (1) LIMITED, (2) PROTECTED, (3) SEMIPRIVATE or SEMIPRI-
VATE, (4) other (and another obvious straw vote if (3) wins).

4 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

or limited-stmt 10:49+
or LIMITED 42:27+

Constraint: If PRIVATE appears, LIMITED shall not appear. 42:30+

5 May 2000 Page 2 of 2 J3/00-193

or LIMITED
or LIMITED

Constraint: The LIMITED attribute shall be specified only in the specification part of a module.
Constraint: The LIMITED attribute shall be specified only for a named variable.
Constraint: If the LIMITED attribute is specified, the EXTERNAL, INTRINSIC, PARAME-

Constraint: The LIMITED attribute shall not be specified for an object that is in a common
TER, PRIVATE or PUBLIC attribute shall not be specified.

block.

42:40+
64:1+
65: 12+

5.1.2.9; LIMITED attribute
The LIMITED attribute specifies that a named variable or structure component shall not
appear in a variable definition context (14.7.7) in any scoping unit that accesses it by use asso-
ciation. If it has the POINTER attribute its association status shall not be changed or become
undefined in any scoping unit that accesses it by use association. A named variable with the
LIMITED attribute may be referenced in a scoping unit that accesses it by use association, even
if the default accessibility is PRIVATE. A structure component with the LIMITED attribute
may be referenced in a scoping unit that accesses it by use association, even if the default
accessibility for components of the type of the object is PRIVATE.

76:21+

5.2.9; LIMITED statement
R533; limited-stmt is LIMITED [::I object-name-list
The LIMITED statement specifies the LIMITED attribute for a list of objects.

82:23+

[Editor: Insert “, a LIMITED statement” before “or” ~ but not if section 11.1.2 is deleted as
recommended in 00-192.

[Editor: Insert “, the LIMITED statement (5.2.9;)’’ after “(5.2.3)”.]

[Editor: Insert “, 5.1.2.9;” after “5.1.2.2”, and replace “statement” by “and LIMITED state-
ments” .]

[Editor: Replace “or PRIVATE” by “, PRIVATE or LIMITED” .]

[Editor: Before “If” insert “If the identifier appears in a LIMITED statement it causes the
object accessible by use association to be a limited object of that module.]

[Editor: Replace “either a PUBLIC or PRIVATE” by “a PUBLIC, PRIVATE or LIMITED”.]

[Editor: Replace “or PUBLIC” by “, PUBLIC or LIMITED” - but not if the “PRIVATE or
PUBLIC” part is removed as advocated in 00-169.1

237:44

239:17

239:18

240:40

241:3

241:4

242:2

13 May 2000 Page 1 of 2 J3/00-194

Subject: FINAL procedures as type-bound procedures
From: Van Snyder
References: 99-108, 00-138 00-170 00-186

1 Introduction

This paper is based on 00-138, which was available but not discussed at meeting 152. The
syntax is slightly different from what was adopted for final procedures in 99-108, and slightly
different from what was proposed in 00-138. There is more work to be done for final procedures,
especially specifying the order in which objects cease to exist, and therefore the order in which
their final procedures are executed.
This paper depends on paper 00-186. It should be processed, if at all, after that paper passes,
or another one that specifies how kind type parameters interact with type-bound procedure
invocation passes.

2 Edits

Edits refer to 00-007. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.for finalization

or PROCEDURE (proc-interface-name) , W 44:18+

or PROCEDURE, FINAL => final-binding-list
FINAL => NULL()

[Editor: Add to the constraint:] 44:25
If proc-interface-name and FINAL are both specified, the interface shall specify a subroutine
that has one dummy argument with a declared type of type-name and that is polymorphic if
and only if type-name is extensible. This argument shall not have INTENT(OUT), nor have
the ALLOCATABLE, ASYNCHRONOUS, OPTIONAL, POINTER, VALUE or VOLATILE
attribute. If the dummy argument is an array it shall have assumed shape. All nonkind
parameters of the dummy argument shall be assumed.

Change “VALUE” to “INTENT(VALUE)” and put it before OPTIONAL if paper 00-170 Editor
passes.

final-binding is procedure-name 44:31+

Constraint:

or NULL(procedure-name)
or NULL(procedure-pointer-name)

The procedure-name shall be the name of an accessible module procedure or ex-
ternal procedure. The procedure-pointer-name shall be the name of an accessi-
ble procedure pointer. The procedure or procedure pointer shall be a subroutine
with an explicit interface having one dummy argument with a declared type of
type-name and that is polymorphic if and only if type-name is extensible. This
argument shall not have the ALLOCATABLE, ASYNCHRONOUS, OPTIONAL,

13 May 2000 Page 2 of 2 J3/00-194

INTENT(OUT), POINTER, VALUE or VOLATILE attribute. If the dummy ar-
gument is an array it shall have assumed shape. All nonkind parameters of the
dummy argument shall be assumed.

Constraint: If several subroutines are bound to the type with binding-attr FINAL, they shall be
distinguished according to the rules for unambiguous procedure references (14.1.2.3).

4.5.1.5.1 Final subroutine 49:30+
A procedure binding that specifies FINAL is a final subroutine for objects of the type. The
set of final subroutines that are bound to the type or that are inherited (4.5.3.1) from the parent
type and not overriden (4.5.3.2) is a generic interface.
If any final subroutines are specified for a type and set of kind type parameters, at least one of
them shall have a scalar dummy argument.
A final subroutine may be elemental.
When any object is deallocated (6.3.3, 6.3.3.1) or becomes undefined by the events specified by
items (3) or (13)(c) in 14.7.6, if a final subroutine is selected as specified in 14.1.2.4.2;; it is
invoked with the object as its actual argument. If the subroutine causes other objects of the
same type and kind type parameters to be deallocated or to become undefined by the events
specified by items (3) or (13)(c) in 14.7.6, it shall be recursive.
Immediately following execution of a final subroutine, if it overrides (4.5.3.2) one, the overridden
final subroutine is invoked, with the object as its actual argument. This process is repeated
until no further final subroutine is available.
Immediately following this process, the object becomes deallocated or undefined.

If a procedure binding that specifies FINAL (4.5.1.6) cannot be distinguished from one inherited 55:O-
(4.5.3.1) from the parent type according to the rules for unambiguous procedure references
(14.1.2.3), it overrides that binding.

14.1.2.4.2; Resolving final procedure references (after
The eflectiwe set of final subroutines for a type is the set of final subroutines inherited from
the parent of the type, minus the overridden ones, plus the ones declared in the type. Each
subroutine in an effective set has a corresponding one in each effective set for each extension
type ~ either the same subroutine or one that overrides it. Each effective set of final subroutines
is a generic interface.
A final subroutine for an object is selected by:

346:22++

material
inserted at
this point
by 00-186)

(1) At most one subroutine is selected from the effective set of final subroutines for the
declared type of the object, according to the generic resolution rules (14.1.2.4.1).

(2) If a subroutine is selected in step (l) , the reference is to the subroutine from the effective
set, for the dynamic type of the object, that corresponds to the subroutine selected in
step (1) .

If the reference is to a deferred binding, an error condition occurs.

14 May 2000 Page 1 of 1 J3/00-195

Subject: Edits to implement decisions in 00-155 concerning ALLOCATABLE
From: Van Snyder
References: 00-155

1 Introduction

In paper 00-155, Malcolm provided alternative syntaxes to implement the capability to specify
the type of object to be allocated by reference to another object. There was a straw vote, and
the syntax “SOURCE = source-variable” won. This paper provides edits, as outlined in 00-155
but updated to reflect the result of the straw vote and to refer to 00-0071-1.

2 Edits

Edits refer to 00-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and 3 in the text.

or SOURCE = source-variable 102:15+
R631a source-variable is variable 102:23+
Constraint: If SOURCE= is specified, type-spec shall not be specified, allocation-list shall con- 102:38+

tain only one allocation, and allocate-object shall be type compatible with source-
variable.

Constraint: The source-variable shall be polymorphic and have the same rank as the allocate-

Constraint: Corresponding kind type parameters of allocate-object and source-variable shall
object.

have the same values.
[Editor: After “;” insert “if a source-variable is specified, it allocates an object whose dynamic 103:6
type and type parameters are the same as those of the source-variable;”]

If SOURCE= is present, source-variable shall have the same shape as ablocate-object. If the 103:25+
value of a nondeferred nonkind type parameter of allocate-object is different from the value of
the corresponding type parameter of source-variable, an error condition occurs. If the allocation
is successful, source-variable is then assigned to allocate-object as if by intrinsic assignment for
objects whose declared type is the dynamic type of source-variable.

ISO/IEC JTCl/SC22/WG5J3/OO-197

IS0 IEC TECHNICAL REPORT

ISO/IEC JTC1 PDTR XX.XX.XX

Enhanced Module Facilities

in

Fortran

An extension to IS 1539-1:1997

13 March 2000

THIS PAGE TO BE REPLACED BY ISO-CS

ISO/IEC PDTR XX.XX.XX.XX J3/00-197

Contents

0 Introduction 11

0.1 Shortcomings of Fortran’s module system . ii

0.1.1 Avoiding recompilation cascades . ii

0.1.2 Packaging proprietary software . 111

0.1.3 Decomposing large and interconnected facilities . 111

0.1.4 Easier library creation . iv

0.2 Disadvantage of using this facility . iv

..

...

...

1 General 1

1.1 Scope . 1

1.2 Normative References . 1

2 , Requirements 2

2.1 Modules . 2

2.1.1 Example of a submodule specification part . 2

2.2 Submodules . 3

2.2.1 Completing a procedure declared in a parent module or submodule 3

2.3 Relation between modules and submodules . 4

3 Required editorial changes to ISO/IEC 1539-1 : 1997 5

1

ISO/IEC PDTR XX.XX.XX.XX J3/00-197 @ ISO/IEC

Foreword

[General part to be provided by IS0 CS]

This technical report specifies an extension to the module program unit facilities of the programming language
Fortran. Fortran is specified by the international standard ISO/IEC 1539-1. This document has been
prepared by ISO/IEC JTCl/SC22/WG5, the technical working group for the Fortran language.

I t is the intention of ISO/IEC JTCl/SC22/WG5 that the semantics and syntax specified by this technical
report be included in the next revision of the Fortran standard (ISO/IEC 1539-1) without change unless
experience in the implementation and use of this feature identifies errors that need to be corrected, or changes
are needed to achieve proper integration, in which case every reasonable effort will be made to minimize the
impact of such changes on existing commercial implementations.

0 Introduction

The module system of Fortran, as standardized by ISO/IEC 1539-1, while adequate for programs of modest
size, has shortcomings that become evident when used for large programs, or programs having large modules.
The primary cause of these shortcomings is that modules are monolithic.

This technical report to extends the module facility of Fortran so that program developers can encapsulate
the implementation details of module procedures in zero or more submodules, that are separate from but
dependent on the module in which the interfaces of their procedures are defined. If a module or submodule
has submodules, it is the parent of those submodules.

The facility specified by this technical report is compatible to the module facility of Fortran as standardized
by ISO/IEC 1539-1.

0.1 Shortcomings of Fortran’s module system

The shortcomings of the module system of Fortran, as specified by ISO/IEC 1539-1, and solutions offered
by this technical report, are as follows.

0.1.1 Avoiding recompilation cascades

Once the design of a program is stable, most changes in modules occur in the implementation of those
modules - in the procedures that implement the behavior of the modules and the private data they retain
and share - not in the interfaces of the procedures of the modules, nor in the specification of publicly accessible
types or data entities. Changes in the implementation of a module have no effect on the translation of other
program units that access the changed module. The existing module facility, however, draws no structural

11

ISO/IEC PDTR XX.XX.XX.XX J3/00-197

distinction between interface and implementation. Therefore, if one changes any part of a module, the
language translation system has no alternative but to conclude that a change may have occurred that could
affect other modules that access the changed module. This effect cascades into modules that access modules
that access the changed module, and so on. This can cause a substantial expense to re-translate and re-certify
a large program.

Using facilities specified in this technical report, implementation details of a module can be encapsulated in
submodules, so that they can be changed without implying that other modules must be translated differently.

If a module is used only in the implementation of a second module, a third module accesses the second, and
one changes the interface of the first module, utilities that examine the dates of files have no alternative but
to conclude that a change may have occurred that could affect the translation of the third module.

Modules can be decomposed using facilities specified in this technical report so that a change in the interface
of a module that is used only in a submodule has no effect on the the parent of that submodule, and therefore
no effect on the translation of other modules that use the second module. Thus, compilation cascades caused
by changes of interface can be shortened.

0.1.2 Packaging proprietary software

If a module as specified by the international standard ISO/IEC 1539-1 is used to package proprietary software,
the source text of the module cannot be published as authoritative documentation of the interface of the
module, without either exposing trade secrets, or requiring the expense of separating the implementation
from the interface every time a revision is published.

Using facilities specified in this technical report, one can publish the source text of the module as authoritative
documentation of its interface, while witholding publication of the source text of the submodules that contain
the implementation details, and the trade secrets embodied within them.

0.1.3 Decomposing large and interconnected facilities

If an intellectual concept is large and internally interconnected, it requires a large module to implement
it. Decomposing such a concept into components of tractable size using modules as specified by ISO/IEC
1539-1 may require one to convert private data to public data.

A concept can be decomposed into modules and submodules of tractable size using facilities specified in this
technical report, without exposing private entities to uncontrolled use.

Decomposing a complicated intellectual concept may furthermore require circularly dependent modules. The
latter is prohibited by ISO/IEC 1539-1. It is frequently the case, however, that the dependence is between
the implementation of some parts of the concept and the interface of other parts. Because the module
facility defined by international standard ISO/IEC 1539-1 does not distinguish between the implementation
and interface, this distinction cannot be exploited to break the circular dependence. Therefore, modules that
implement large intellectual concepts tend to become large, and therefore expensive to maintain reliably.

...
111

ISO/IEC PDTR XX.XX.XX.XX J3/00-197 @ ISO/IEC

Using facilities specified in this technical report, complicated concepts can be implemented in submodules
that access modules, rather than modules that access modules, thus reducing the possibility for circular
dependence between modules.

0.1.4 Easier library creation

Most Fortran translator systems produce a single file of computer instructions, called an object f i le, for each
module. This is easier than producing a separate object file for the specification part and for each module
procedure. It is also convenient, and conserves space and time, when a program uses all or most of the
procedures in each module. It is inconvenient, and results in a larger program, when only a few of the
procedures in a general purpose module are needed in a particular program.

If modules are decomposed using facilities specified in this technical report, it would be easier for each
program unit’s author to control how module procedures are allocated among object files.

0.2 Disadvantage of using this facility

Translator systems will find it more difficult to carry out inter-procedural optimizations if the program uses
the facility specified in this technical report. When translator systems become able to do inter-procedural
optimization in the presence of this facility, it is likely that requesting inter-procedural optimization will
cause compilation cascades in the first situation mentioned in section 0.1.1, even if this facility is used.
Although one advantage of this facility would be nullified in the case when users request inter-procedural
optimization, it would remain if users do not request inter-procedural optimization, and the other advantages
remain in any case.

iv

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

Information technology - Programming Languages - Fortran

Technical Report: Enhanced Module Facilities

1 General

1.1 Scope

This technical report specifies an extension to the module facilities of the programming language Fortran.
The current Fortran language is specified by the international standard ISO/IEC 1539-1 : Fortran. The
extension allows program authors to develop the implementation details of concepts in new program units,
called submodules, that cannot be accessed directly by use association. In order to support submodules,
the module facility of international standard ISO/IEC 1539-1 is changed by this technical report in such
a way as to be upwardly compatible with the module facility specified by international standard ISO/IEC
1539-1.

Section 2 of this technical report contains a general and informal but precise description of the extended
functionalities. Section 3 contains detailed editorial changes which if applied to the current international
standard would implement the revised language specification.

1.2 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of this
technical report. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this technical report are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of IEC and I S 0
maintain registers of currently valid International Standards.

ISOIIEC 1539-1 : 1997 Information technology - Programming Languages - Fortran

1 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

2 Requirements

The following subsections contain a general description of the extensions to the syntax and semantics of the
current Fortran programming language to provide facilities for submodules.

2.1 Modules

As specified in ISO/IEC 1539-1, a module consists of a specification part and a module subprogram part.

This technical report defines a submodule specification part, in which only the interfaces of procedures
in submodules are declared. This part is introduced by a statement of the form SUBMODULE : : submodule-
name. A submodule specification part extends from the SUBMODULE statement that introduces it to
(but not including) the next CONTAINS, SUBMODULE or END MODULE statement. A submodule
procedure is a module procedure for which the interface is specified in a submodule specification part, and
the body is defined in a submodule.

A module or submodule may have any number of module subprogram parts, and any number of submodule
specification parts, in any order. If several submodule specification parts have the same name, the effect is
as if the specifications they contain were concatenated within a single submodule specification part. This
allows one to put all module procedures into alphabetical order.

Within a submodule specification part, procedure interface declarations specify procedures in the specified
subsidiary submodule that can be accessed. This interface is syntactically identical to an interface body,
but semantically different in that entities of the host environment of the interface are accessible within the
interface by host association. Because of this difference, a procedure interface declaration within a submodule
specification part is called a procedure interface declaration instead of an interface body.

2.1.1 Example of a submodule specification part

SUBMODULE : : POINTS-A
REAL FUNCTION POINT-DIST (A , B)
! Compute t he distance between the po in t s A and B

TYPE(PO1NT) : : A , B
END FUNCTION POINT-DIST

The submodule specification part in the above example specifies that there is a submodule, named POINTSA,
and that there is a function named POINTDIST, with the specified interface, that can be accessed from that
submodule. If the program unit containing the submodule specification part is a module, and POINTDIST
is public, then POINTDIST can be accessed by use association of that module.

2 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

2.2 Submodules

A submodule is a program unit that is dependent on and subsidiary to a module or another submodule.
If a module or submodule has subsidiary submodules, it is the parent of those subsidiary submodules.

A submodule is introduced by a statement of the form SUBMODULE (parent-name) submodule-name, and
terminated by a statement of the form END SUBMODULE submodule-name.

A submodule may have a specification part, zero or more submodule specification parts, and zero or more
module procedure parts.

Everything is a submodule is effectively PRIVATE except for those submodule procedures that were declared
to be PUBLIC in the parent module. It is not possible to access entities declared in the specification part
of a submodule because a USE statement must specify a module, not a submodule. Thus, PRIVATE and
PUBLIC declarations are not permitted in a submodule.

2.2.1 Completing a procedure declared in a parent module or submodule

If a procedure interface declaration appears in the parent program unit, the procedure shall be defined in
the specified submodule, either within a module procedure part or a submodule specification part.

Within a module procedure part of the subsidiary submodule, the procedure body shall be introduced by
a statement of the form SUBMODULE FUNCTION function-name or SUBMODULE SUBROUTINE subroutine-name,
depending on the declaration in the parent program unit. The interface of the procedure shall not be repeated
in the submodule.The procedure body is logically an extension of its interface declaration; it does not access
its interface declaration by host assciation.

Within a submodule specification part of the subsidiary submodule, the same statement may be used to
indicate that definition of the body of the procedure is deferred to a yet more subsidiary submodule. In
this case, neither an interface nor body shall follow the statement. The procedure shall be defined in the
submodule specified in the submodule specification part of the subsidiary submodule, either within a module
procedure part or a submodule specification part. This facility may be used to place the body of a public
procedure in a submodule two or more steps subsidiary to the module, so that it may share implementation-
dependent data or procedures in an intermediate subsidiary submodule with procedures in different subsidiary
submodules. If the procedures in the intermediately subsidiary submodule are not specified in the module,
they cannot be accessed by use association, and therefore either their interfaces or bodies can be changed
without affecting the translation of a program unit that accesses the module by use association.

Example of a submodule

3 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

! Don’t re-declare dummy arguments , or resul t type

END FUNCTION POINT-DIST
HOW-FAR = SQRT((A%X-B%X)**2 + (A%Y-B%Y) **2)

END SUBMODULE POINTS-A

Example of submodules with a deferred procedure body

SUBMODULE(PO1NTS) POINTS-A
! Type and da ta dec la ra t ions shared by submodules of POINTS-A (but not
! accessible anywhere else:

SUBMODULE : : SUB-POINTS-A
. . .

SUBMODULE FUNCTION POINT-DIST
! No body, because i t ’s i n a SUBMODULE s p e c i f i c a t i o n p a r t
. . .

! Other submodule o r c o n t a i n s p a r t s
END SUBMODULE POINTS-A

SUBMODULE(PO1NTS-A) SUB-POINTS-A
CONTAINS

SUBMODULE FUNCTION POINT-DIST RESULT(H0W-FAR)
! Don’t re-declare dummy arguments, o r r e s u l t t y p e
! E n t i t i e s i n POINTS-A and POINTS can be accessed

HOW-FAR = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)
END FUNCTION POINT-DIST

END SUBMODULE SUB-POINTS-A

2.3 Relation between modules and submodules

Public entities of a module, including procedure interface declarations in submodule specification parts,
can be accessed by use association. Submodules contain no public entities. Public procedure interface
declarations in submodule specification parts of modules imply that the procedure bodies in the specified
submodules are indirectly accessible, by use association of the module.

All entities of a parent module or submodule, including private entities, declarations of interfaces to proce-
dures implemented in different submodules, and entities accessed from a parent module or submodule by
host association, are accessible within each subsidiary submodule by host association.

A procedure body in a submodule is logically a continuation of its interface in its parent program unit; it
does not access its interface by host association.

4 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

3 Required editorial changes to ISO/IEC 1539-1 : 1997

The following suggested editorial changes illustrate that the extension in this technical report is not a large
change to Fortran. While every effort has been made to cover all the bases, they will undoubtedly be a few
additional changes necessary. Depending on the schedule of implementation of this technical report, it may
also be necessary to convert the changes to refer to the 200x standard instead of the 1997 standard.

[Page and line numbers in brackets refer to ANSI/NCITS/J3 document 97-007r2.1

[10:30+] Add a new syntax rule in section 2.1 High level syntax, after rule R213:

submodule-specification-part is submodule-specification-stmt
submodule-procedure-declaration
[submodule-procedure-declaration] ...

[11:35] In the second line of 2.2 Program unit concepts, add “, a submodule” after “a module”.

[11:45] In item (2) of the list in section 2.2 Program unit concepts, replace “body” by “declaration
(12.3.2)”.

[186:17-341 Replace the normative text of section 11.3 Modules (but not subsidiary sections or the notes)
with the following:

A module contains specifications and definitions that may be accessible to other program units.

module is module-stmt
[specification-part]
[procedure-part 3 .._
end-module-stmt

module-stmt is MODULE module-name

procedure-part is module-subprogram-part
or submodule-specijication-part

submodule-specification-stmt is SUBMODULE :: submodule-name

submodule-procedure-declaration is procedure-interface-declaration
or submodule-procedure-stmt

submodule-procedure-stmt is SUBMODULE FUNCTION function-name
or SUBMODULE SUBROUTINE subroutine-name

end-module-stmt is END MODULE [module-name]

Constraint: If module-name is specified in the end-module-stmt, it shall be identical to the module-name in
the module-stmt.

5 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

Constraint: A specification-part in a module or submodule shall not contain a stmt-function-stmt, an entry-

Constraint: If an object of a type for which component-initialization (R429) is specified appears in the
stmt or a format-stmt.

specification-part of a module or submodule and does not have the ALLOCATABLE or POINTER
attribute, the object shall have the SAVE attribute.

Constraint: A module-name shall not be the same as any other name in the program unit.
Constraint: A submodule-name shall not be the same as any other name in the program unit, except that

two submodule-specification-parts may have the same name.
Constraint: The function-name or subroutine-name in a submodule-procedure-stmt shall be declared to be

a function or subroutine, respectively, in a submodule-procedure-declaration in a submodule-
specification-part of the parent module or submodule that names the submodule in which the
submodule-procedure-stmt appears.

Constraint: A submodule-procedure-stmt shall not appear except within a submodule.

A module name is a global name, and shall not be the same as the name of any other program unit, external
procedure, or common block in the program.

If a module has submodules ([new section] 11.3.1), it is the parent module of those submodules.

A submodule-name specified in a submodule-specification-stmt shall be the same as the name of exactly one
submodule ([new section] 11.3.1) in the program.

Every procedure that is named in a submodule-specification-part and is not a dummy procedure is a submod-
ule procedure ([new section] 12.5.2.1), and shall be declared in a submodule-procedure-stmt, a submodule-
function-stmt, or a submodule-subroutine-stmt in the submodule specified by the submodule-name in the
submodule-specification-stmt.

If the same submodule-name appears on more than one submodule-specification-stmt, the effect is as though
the submodule-speczfication-parts introduced by those statements were concatenated.

[187:2+] Insert the following before the existing section 11.3.1 Module reference, and renumber subsequent
sections:

11.3.1 Submodules

A submodule is a program unit that is dependent on and subsidiary to its parent module or submodule.
Its parent module or submodule is its host environment.

submodule is submodule-stmt
[specification-part]
[procedure-part] ...
end-submodule-stmt

submodule-stmt is SUBMODULE (parent-name) submodule-name

end-submodule-stmt is END SUBMODULE [submodule-name]

Constraint: The submodule-name in the submodule-stmt shall appear in a submodule-specification-stmt in

6 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

the module or submodule named by the parent-name.

name in the submodule-stmt.

in the program unit.

Constraint: If submodule-name is specified in the end-submodule-stmt, it shall be identical to the submodule-

Constraint: The submodule-name specified in the submodule-stmt shall not be the same as any other name

A submodule-name is a global name, and shall not be the same as the name of any other program unit,
external procedure, or common block in the program.

If a submodule has submodules, it is the parent submodule of those submodules.

Note
Related submodules and their parent module or submodule stand in a tree-like hierarchical relationship
one to another, with the module at the root. For each submodule, its parent module or submodule is its
parent with respect to the tree, and its submodules are children with respect to the tree.

[193:25] In the first sentence of section 12.3.2 Specification of the procedure interface, add “, submod-
ule” after “module”.

[193:27-281 In the last sentence of the first paragraph of section 12.3.2 Specification of the procedure
interface, change the first occurrence of “in an interface block” to “as a procedure interface declaration,”
and change the second “interface block” to “procedure interface declaration.”

[193:29-331 Remove note 12.3 - it is modified and moved to section 12.3.2.1. Replace it by:

procedure-interface-declaration is function-stmt
[specification-part 3
end-function-stmt

[specification-part]
end-subroutine-stmt

or subroutine-stmt

Constraint: A procedure-interface-declaration for a pure procedure shall specify the intents of all dummy

Constraint: A procedure-interface-declaration shall not contain an entry-stmt, data-stmt, format-stmt, or
arguments except pointer, alternate return, or procedure arguments.

stmt-function-stmt.

A procedure interface declaration specifies all of the procedure’s characteristics.

[193:42-61 Replace the definition of interface-body (R1205) and the following constraint by:

interface-body is procedure-interface-declaration

Note 12.3

7 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX 53/00-197

An interface body cannot be used to describe the interface of an internal procedure, a module procedure,
of an intrinsic procedure because the interfaces of such procedures are already explicit. The name of a
module procedure may, however, appear in a MODULE PROCEDURE statement in an interface block.

[194:11-121 Remove the first constraint after syntax rule R1207 (it has been moved to section 12.3.2, with
revised wording).

[194:32] In the first sentence of the paragraph of text immediately before note 12.4, replace “An interface
body specifies all of the procedure’s characteristics and these” by “The procedure characteristics specified
by an interface body”.

[206:21+] Add a new section 12.5.2.1 subsidiary to section 12.5.2 and renumber subsequent subsections:

12.5.2.1 Submodule procedures

A submodule procedure is a module procedure for which the interface is declared in a parent module
(11.3) or submodule (11.3.1), and the body is defined in a submodule of that parent program unit. A
submodule procedure body is logically a continuation of its procedure interface declaration in the parent
module or submodule; it does not access the interface by host association.

A submodule procedure is accessible in its parent module or submodule. If the parent program unit is a
module, and the procedure declared in the submodule-specification-part is public, it can be accessed by use
association.

Note
It is possible to place specifications in a submodule declaration that do not contribute to specification of
the interface. Unlike in an interface body, these specifications are part of the procedure.

[206:34] In section 12.5.2.2 Function subprogram change the first line of the syntax rule (R1216) for
function-subprogram to:

function-subprogram is function-header

[206:38+] In section 12.5.2.2 Function subprogram add the following before the syntax rule (R1217) for
function-stmt:

function-header is function-stmt
or submodule-function-stmt

[206:42+] In section 12.5.2.2 Function subprogram add the following after the syntax rule (R1217) and
constraint for function-stmt:

submodule-function-stmt is SUBMODULE FUNCTION function-name
[RESULT (result-name)]

Constraint: A submodule-function-stmt shall not appear except within a submodule.
Constraint: The function-name shall be declared, in a submodule-procedure-declaration in a submodule-

8 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

specification-part of the parent module or submodule of the submodule in which the submodule-
function-stmt appears, to be a function that is not a dummy procedure. The submodule-
specification-stmt that introduces that submodule-specification-part shall name the submodule
in which the submodule-function-stmt appears.

Constraint: The result-name shall not be specified in both the procedure-interface-declaration and the
submodule-function-stmt.

[207:14+] In section 12.5.2.2 Function subprogram, in the last constraint after the syntax rule (R1220)
for end-function-stmt, change function-stmt to function-header.

[208:25] In section 12.5.2.3 Subroutine subprogram change the first line of the syntax rule (R1221) for
subroutine-subprogram to:

subroutine-subprogram is subroutine-header

[208:29+] In section 12.5.2.3 Subroutine subprogram add the following before the syntax rule (R1222)
for subroutine-stmt:

subroutine-header is subroutine-stmt
or submodule-subroutine-stmt

[208:32+] In section 12.5.2.3 Subroutine subprogram add the following after the syntax rule (R1222)
and constraint for subroutine-stmt:

submodule-subroutine-stmt is SUBMODULE SUBROUTINE subroutine-name

Constraint: A submodule-subroutine-stmt shall not appear except within a submodule.
Constraint: The subroutine-name shall be declared, in a submodule-procedure-declaration in a submodule-

specification-part of the parent module or submodule of the submodule in which the submodule-
subroutine-stmt appears, to be a subroutine that is not a dummy procedure. The submodule-
specification-stmt that introduces that submodule-specification-part shall name the submodule
in which the submodule-subroutine-stmt appears.

[208:41+] In section 12.5.2.3 Subroutine subprogram, in the last constraint after the syntax rule (R1224)
for end-subroutine-stmt, change subroutine-stmt to subroutine-header.

[282:24] In 14.6.1.3 Host association add procedure interface declaration that is not an interface body,
a subsidiary submodule of a module” after Limodule subprogram” in the first sentence.

[283:8] In the last line of the first paragraph after the list of entities that can become inaccessible as a result
of host association, replace LLsubprogramll by %coping unit”.

[298:30+] Add parent module or submodule to the glossary:

parent module or submodule (11.3): A module or submodule that has submodules.

[299:20] In the glossary entry for program unit, add lLa submodule” after “module”.

9 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

[300:24+] Add submodule and submodule procedure to the glossary:

submodule (11.3.1): A program unit that is logically an extension of a module or submodule, but cannot
be accessed directly by use association.

submodule procedure (12.5.2.1): A module procedure for which the interface is declared in a parent module
or submodule, and the body is defined in a submodule of that parent program unit.

[334:17+] Add a new section subsidiary to section C.8.3 Examples of the use of modules:

C.8.3.9 Modules with submodules

This example illustrates a module, color-points, with a submodule, co lor -poin tsa , that in turn has a
submodule, color-points-b. Public entities declared within color-points can be accessed by use associa-
tion. The module color-points does not have a contains-part, but a contains-part is not prohibited. The
module color-points could be published as definitive specification of the interface, without revealing trade
secrets contained within co lo r -po in t sa or color-points-b.

module color-points
type color-point

p r i v a t e
r e a l : : x , y
in t ege r : : co lor

end type color-point
submodule : : color-points-a ! In te r faces for p rocedures wi th separa te

! b o d i e s i n t h e submodule color-points-a
subrout ine color-point-del (p) ! Destroy a color-point object

end subrout ine color-point-del
r ea l func t ion co lo r -po in t -d i s t (a , b) ! Distance between two color-point objects

type(co1or-point) : : a , b
end funct ion color-point-dis t
subroutine color-point-draw (p) ! Draw a color-point object

end subroutine color-point-draw
subroutine color-point-new (p) ! Create a color-point object

end subroutine color-point-new

type(co1or-point) : : p

type(co1or-point) : : p

type(co1or-point) : : p

end module color-points

The only entities within co lo r -po in t sa that can be accessed by use association are procedures declared
in submodule specification parts of color-points (in this case, there is only one submodule specification
part). If the procedures’ bodies are changed but their interfaces are not, the interface from program units
that access them by use association is unchanged. If the module and submodule are in separate files, utilities
that examine the date of modification of a file would notice that changes in the module could affect the

10 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

translations of program units that access the module by use association, but that changes in submodules
could not.

The variable instance-count is not accessible by use association of color-points, but is accessible within
color-points-a, and its submodules.

submodule(co1or-points) color-points-a ! Submodule of color-points

! Procedure names a r e i n a l p h a b e t i c a l o r d e r
conta ins ! Inv i s ib l e bod ie s fo r pub l i c i n t e r f aces dec l a red i n t he module

in teger , save : : instance-count = 0

submodule subroutine color-point-del ! (p)
instance-count = instance-count - 1
dea l loca te (p)

end subroutine color-point-del
submodule func t ion co lo r -po in t -d i s t r e su l t (d i s t) ! (a , b)

end funct ion color-point-dis t

submodule subroutine color-point-draw ! (p)
! "submodule" p r e f i x i n d i c a t e s t h e i n t e r f a c e i s d e f i n e d i n t h e p a r e n t , n o t h e r e .
! Being i n a submodule s p e c i f i c a t i o n p a r t means t h e body is n o t h e r e , e i t h e r .

submodule subroutine color-point-new ! (p)

d i s t = s q r t ((b%x - a%x)**2 + (b%y - a%y)**2)

submodule : : color-points-b

contains

instance-count = instance-count + 1
a l l o c a t e (p)

end subroutine color-point-new
submodule : : color-points-b ! cont inua t ion of above.

! I n t e r f a c e f o r a procedure with a s epa ra t e
! body i n submodule color-points-b

subrout ine inqui re -pa le t te (p t , p a l)
u se pa l e t t e - s tu f f ! p a l e t t e - s t u f f , e s p e c i a l l y submodules

! thereof , can access color-points by use
! associat ion without causing a c i r c u l a r
! dependence because t h i s u s e i s n o t i n t h e
! module. Furthermore, changes i n t h e module
! pa l e t t e - s tu f f are not accessible by use
! a s soc ia t ion of color-points

type(co1or-poin t) , in ten t (in) : : p t
type(pa1et te) , i n t en t (ou t) : : p a l

end subrout ine inquire-palet te
end submodule color-points-a

The subroutine inqui re -pa le t te is accessible within color-points-a because its interface is declared within
a submodule specification part therein. It is not, however, accessible by use association, because its interface
is not declared in a submodule specification part of the module, color-points. Since the interface is not

11 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

declared in the module, changes in the interface cannot affect the translation of program units that access
the module by use association.

submodule(co1or-points-a) color-points-b ! Subsidiary**2 submodule
conta ins ! I n v i s i b l e body f o r i n t e r f a c e d e c l a r e d i n t h e p a r e n t submodule

submodule subroutine color-point-draw ! (p)
! "submodule" p r e f i x i n d i c a t e s t h e i n t e r f a c e is de f ined i n t he pa ren t , no t he re .
! Being i n a con ta ins pa r t means t h e body i s here .

type(pa1et te) : : MyPalette
. . . ; c a l l i n q u i r e - p a l e t t e (p, MyPalette 1 ; . . .

end subroutine color-point-draw
submodule subrout ine inqui re -pa le t te
! "use palette-stuff" not needed because i t ' s i n t h e p a r e n t submodule

end subrout ine inquire-palet te
subrout ine p r iva te -s tuf f ! not accessible f rom color-points-a

end subroutine private-stuff

. . . implementation of i nqu i r e -pa le t t e

. . .

end submodule color-points-b

module pa l e t t e - s tu f f

conta ins
type : : p a l e t t e ; . . . ; end type pa le t te

s u b r o u t i n e t e s t - p a l e t t e (p)
! Draw a color wheel using procedures from the color-points module

t y p e (p a l e t t e) , i n t e n t (i n) : : p
use color-points ! This does not cause a c i r c u l a r dependency because

! t he "use pa l e t t e - s tu f f " t ha t is log ica l ly w i th in
! color-points i s in t he co lo r -po in t s - a submodule.

end sub rou t ine t e s t -pa l e t t e
end module pa l e t t e - s tu f f

There is a use pa le t te -s tuf f in color-points-a, and a use color-points in p a l e t t e s t u f f . The use
p a l e t t e s t u f f would cause a circular reference if it appeared in color-points. In this case it does not
cause a circular dependence because it is in a submodule. Submodules are not accessible by use association,
and therefore what would be a circular appearance of use pa le t te -s tuf f is not accessed.

program main
use color-points
! "instance-count" and " inqu i r e -pa le t t e " a r e no t access ib l e he re
! because they are no t dec l a red i n t he " co lo r -po in t s " module.
! "color-points-a" and "color-points-b" cannot be accessed by

12 of 13

TECHNICAL REPORT @ ISO/IEC ISO/IEC PDTR XX.XX.XX.XX J3/00-197

! use assoc ia t ion .
i n t e r f a c e (draw) ! j u s t t o demons t r a t e i t ’s poss ib le

end in te r face
type(co1or-point) : : C-1 , C-2
real : : RC

module procedure color-point-draw

. . .
c a l l color-point-new (c-1) ! body in co lo r -po in t s - a , i n t e r f ace i n co lo r -po in t s

c a l l draw (c-1) ! body in co lo r -po in t s -b , spec i f i c i n t e r f ace
. . .

! in co lo r -po in t s , gene r i c i n t e r f ace he re .

r c = color-point-dist (c-1, c-2) ! body in co lo r -po in t s - a , i n t e r f ace i n co lo r -po in t s

ca l l co lor -poin t -de l (c -1) ! body in co lo r -po in t s - a , i n t e r f ace i n co lo r -po in t s
. . .

. . .
end program main

13 of 13

	0 Introduction
	0.1.2 Packaging proprietary software
	0.1.3 Decomposing large and interconnected facilities
	0.1.4 Easier library creation
	0.2 Disadvantage of using this facility

	1 General
	1.1 Scope
	1.2 Normative References

	2 Requirements
	2.1 Modules
	2.1.1 Example of a submodule specification part

	2.2 Submodules
	2.2.1 Completing a procedure declared in a parent module or submodule

	2.3 Relation between modules and submodules

	3 Required editorial changes to ISO/IEC 1539-1 :

